
How RSA Works
By Martin Rupp & Petr Smirnov
SCIENTIFIC AND COMPUTER DEVELOPMENT SCD LTD

Introduction

In this article, we will explain the functioning of the well-known cryptographic algorithm
called RSA (Rivest-Shamir-Adleman) .

What is RSA

RSA is the root of all asymmetric key cryptographic algorithms. It is asymmetric
because the decryption key is different from the encryption key.

RSA was first published in 1977.

RSA uses basic properties of modular arithmetic , that is to say the arithmetic
operations in a finite congruence ring , namely the ring of integers modulo n, where n is
an integer > 0.

The ring of integers modulo n is usually noted . In such ring it is possible to find𝑍/𝑛𝑍

a couple of integers (e,d) such that: for any integer m such that n > m >(𝑚𝑒)𝑑 = 𝑚

0. Concretely this means that will always be a multiple of n.(𝑚𝑒)𝑑 − 𝑚

In fact there are many different couples of integers (e,d).

For instance, if we take n=10, if e=3 and d=3 then:

𝑚 𝑚9 𝑚9 − 𝑚

1 1 1

2 512 510

3 19683 19680

4 262144 262140

5 1953125 1953120

6 10077696 10077690

7 40353607 40353600

8 134217728 134217720

9 387420489 387420480

The combination of (e,d,n) is the RSA cryptosystem. (e,d) is the keypair of the
cryptosystem.

In our example, the number m<10 will be ciphered by the operation and will𝑚 → 𝑚3

be deciphered by the same operation.

(clear)𝑚 (ciphered)𝑚3

1 1

2 8

3 27=7

4 64=4

5 3125=5

6 216=6

7 343=3

8 512=2

9 729=9

In our example m is ciphered with e and deciphered with d. Since in the(𝑚𝑒)𝑑 = 𝑚
ring , this makes sense, indeed ciphering followed by deciphering returns the𝑍/𝑛𝑍
clear text m.

We have defined the RSA cryptosystem! The whole security of the RSA lies in the fact

that the only knowledge of the encrypted data , e.g together with n, is not enough𝑚𝑒

to find “easily” the other part, e.g d.

Given a message m represented by a number < n, the ciphering operation is:

𝑚 → (𝑚)𝑒

and the deciphering operation is:

𝑚' → (𝑚')𝑑

In this example, e is the public key and d is the private key. The couple (e,d) is called an
RSA key pair.

Concretely, the value of n will be a “big” number. The number which can be encrypted
therefore can represent a 32 bit or 64 bits value.

Next we need to explain

1) How to generate the key, eg finding keypairs (e,d) for a value of n
2) Why RSA is a secure cryptosystem

Key Pair generation

Some results in modular arithmetic

The RSA system relies on “basic” results of modular arithmetic such as the Lagrange
Theorem.

Lagrange Theorem states that, for a number x > 0, coprime with n, 𝑥φ(𝑛) ≡ 1(𝑛)
where is the Euler function.φ

The Euler function of a number q is defined as the amount of numbers which are
relatively prime with it.

φ(𝑛) =
∆(𝑠,𝑛)=1

∑ 𝑠

means that s and n are relatively prime with each other (coprime) , e.g∆(𝑠, 𝑛) = 1
they share no common factors but 1.

For instance we list the following values of :φ

𝑛 φ(𝑛)

5 {1,2,3,4}=4

10 {1,3,7,9}=4

11 {1,2,3,4,5,6,7,8,9,10}=10

28 {1,3,5,9,11,13,15,17,19,23,25,27}=12

There are a lot of properties for the Euler function but the one we are interested in is the
following:

for two distinct prime numbers p and q.φ(𝑝𝑞) = (𝑝 − 1)(𝑞 − 1)

This means that, if we have 𝑛 = 𝑝𝑞 𝑚(𝑝−1)(𝑞−1) ≡ 1 (𝑛)

The original RSA algorithm uses Euler function, The next versions of RSA are using the

Charmichael function . Here we will use Euler function.λ(𝑛) φ

Key generation

Our problem is to find two numbers e and d, such that .𝑚𝑒𝑑 ≡ 𝑚 (𝑛)
For this it is enough to find e and d such that .𝑒𝑑 ≡ 1 (𝑝 − 1)(𝑞 − 1)

Indeed, in such case

.𝑚𝑒𝑑 = 𝑚1+ 𝑘(𝑝−1)(𝑞−1) = 𝑚((𝑚(𝑝−1)(𝑞−1))𝑘) ≡ 𝑚 (𝑛)

For this, we choose e to be coprime with (p-1)(q-1) , e.g having no common factor but 1.

To generate the private key, we then need to find d such that:

𝑒𝑑 = 1 (𝑚𝑜𝑑𝑢𝑙𝑜 (𝑝 − 1)(𝑞 − 1))

e.g d is the modular inverse of e modulo (p-1)(q-1)).

Finding such a number is always possible, because e is coprime with (p-1)(q-1) and so

it has an inverse in the ring .𝑍/((𝑝 − 1)(𝑞 − 1))𝑍

Security of the system

To break the RSA system, we must find the value of the private key d , knowing the

modulus n and the exponent e (and the ciphered message)𝑚𝑒

For this we must solve:

“Knowing (e,n), find d such that ed=(p-1)(q-1) (modulo (p-1)(q-1))“

If we know the two primes p and q, the problem is trivial, so the problem is equivalent to:

“Knowing a number n which is the product of two primes p and q, find p and q”

The security of the RSA cryptosystem lies in the fact that it is a very difficult problem
and the best way to find p and q is to apply the general number field sieve (GNFS)
algorithm but that algorithm has sub-exponential time complexity, e,g range between
polynomial time and exponential time.

Even sub-exponential, the time needed for factorization of large integers, using the
GNFS, is at the moment too important, and can typically reach hundreds of years, even
using the best computational power.

Cracking the RSA-768, e.g factoring a 232 digit number, was achieved in 2009 using
hundreds of extremely optimized machines. The RSA laboratories, owner of the RSA
patent, are offering prizes to anyone who can factor RSA numbers.

As of 2019, the RSA-2048 which has 617 decimal digits is considered to be very
secure,

The fact that, currently, it is not (publically) known about any integer factoring algorithm
with polynomial time complexity (e.g which could be used with the actual machines)
does not mean such algorithms do not exist but for the moment, RSA is considered to
be a secure cryptosystem.

https://en.wikipedia.org/wiki/RSA_numbers

RSA is slow, because it requires modular arithmetic computations and is not usually
used to cipher data, but to cipher keys or to encrypt hashes of data.

Example

We need to choose two prime numbers p and q . There are several methods to
generate such primesm usually this involves primality testing.

For instance p=5023 and q=64037.

We have n=pq=321657851 and (p1)(q-1)=5022*64036=321588792.

We need to choose e such that e is coprime with 321588792.

It is enough to choose e as a prime number < 321588792. For instance e=113.
Only left is to find d as the modular inverse of e modulo 321588792, e.g. such that ed-1
is a multiple of 321588792. It is not hard to find such a number, it is d=105298985.

Our algorithm will then encode m by the operation

𝐶𝑖𝑝ℎ𝑒𝑟 = 𝑚113

And decipher by the operation:

𝐷𝑒𝑐𝑖𝑝ℎ𝑒𝑟 = 𝐶𝑖𝑝ℎ𝑒𝑟105298985

RSA encrypts numbers but any digital data - including text - can be converted into an
integer into a wide number of ways.

Here we can encrypt numbers up to 321,657,851.

We code letters in the alphabet by a number 0-25 , period and space by the value 26
and 27.

We consider a text made of n letters (represented by numerical values (0-27)

.𝑥
1
.... 𝑥

𝑛

We form N as . e,g N is the number represented by in𝑁 =
𝑖=1

𝑛

∑ 𝑥
𝑖
28𝑖 [𝑥

1
.... 𝑥

𝑛
]

base-28.

If N < 321,657,851, we can use our RSA system to encrypt it. We can encode only up to
5 letters. But we can split any text into groups of 5 letters.

For instance the text:

“TONIGHT FIVE MORNING.ATTACK RIVER KWAI.”

Can be split into groups of words of 5 letters (eventually padded with spaces) then
ciphered by the RSA system.

Clear base28 Clear word Cipher base 28 Ciphered word

11996214 TONIG 110409650 GLRQRW

4740996 HT FI 91722354 FJGIWK

13017102 VE MO 263389813 PIOMLB

10741170 RNING 261279660 PFCIYM

15996484 .ATTA 317852682 SNDMJO

1470484 CK RI 116157134 GU LRC

13009678 VER K 252680772 OTCQZI

13529459 WAI. 195108971 LJL NP

Here is the program (PERL) used for ciphering and deciphering:

sub text2base28($)

{

my $word= shift @_;

my @letters= split //,$word;

my $N=0;

my $n=0;

foreach my $letter(@letters)

{

if ($letter =~ /[A-Z]/)

{

#65-90

$n= ord ($letter) -65;

}

elsif($letter eq ".")

{

$n=26;

}

elsif($letter eq " ")

{

$n=27;

}

$N=28*($N)+$n;

}

return $N;

}

sub base282Text($)

{

my $N=shift @_;

my $word="";

my @letters= split //,$word;

my $n=0;

for(my $i=5;$i>-1;$i--)

{

my $N1=$N;

for(my $j=0;$j<$i;$j++)

{

$N1=$N1/28;

}

$n=int $N1;

if(($n==0)&&($i ==5))

{

}

elsif($n<26)

{

my $c=chr ($n+65);

$word=$word.$c;

}

elsif($n==26)

{

$word=$word.'.';

}

elsif($n==27)

{

$word=$word.' ';

}

else

{

die("$N: incorrect word at i=$i, value=$n \n");

}

my $N1=1;

for(my $j=0;$j<$i;$j++)

{

$N1=$N1*28;

}

$N=$N-$n*$N1;

}

return $word;

}

sub RSACipherDecipher($$)

{

my $n=321657851;

my $m= shift @_;

my $x= shift @_;

my $res=1;

#m^e/m^d

for(my $i=0;$i<$x;$i++)

{

$res=$res * $m;

$res=$res % $n;

}

$res=$res % $n;

return $res;

}

my $e= 113;

my $d=105298985;

my @texts=(

"TONIG",

"HT FI",

"VE MO",

"RNING",

".ATTA",

"CK RI",

"VER K",

"WAI. "

);

foreach my $text (@texts)

{

my $n1=text2base28($text);

my $W0=base282Text($n1);

#print "clear=$n1\n$W0\n";

my $n2= RSACipherDecipher($n1,$e);

my $W=base282Text($n2);

print "\n---------\n";

print "cipher=$n2\t\t ($W)";

print "\n---------\n";

my $n3= RSACipherDecipher($n2,$d);

my $W2=base282Text($n3);

print "\n---------\n";

print "decipher=$n3\t\t ($W2)";

print "\n---------\n";

}

The program will run very slowly compared to a symmetric cipher. That is why RSA is
not supposed to be used for long inputs.

Conclusion: We aimed at presenting the way RSA works and allow the reader to
understand what’s hidden “under the hood” of that well-known ciphering
algorithm. There is a large literature about the topic of RSA, integers
factorizations etc… and we just aimed at presenting the basic theory behind RSA.

